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tion. The localization errors in the MSFV method are systematically reduced by updating
the local boundary conditions with global information. This iterative multiscale finite-vol-
ume (i-MSFV) method allows the conservative reconstruction of the velocity field after any
iteration, and the MSFV method is recovered, if the velocity field is reconstructed after the
first iteration. Both the i-MSFV and the MSFV methods lead to substantial computational
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lterative multiscale methods savings, where an approximate but locally conservative solution of an elliptic problem is
Multiscale finite-volume method required. In contrast to the MSFV method, the i-MSFV method allows a systematic reduc-
Elliptic problem tion of the error in the multiscale approximation. Line relaxation in each direction is used
Poisson equation as an efficient smoother at each iteration. This smoother is essential to obtain convergence
Line relaxation in complex, highly anisotropic, heterogeneous domains. Numerical convergence of the
Multiphase flow method is verified for different test cases ranging from a standard Poisson equation to

Porous media highly heterogeneous, anisotropic elliptic problems. Finally, to demonstrate the efficiency

of the method for multiphase transport in porous media, it is shown that it is sufficient to
apply the iterative smoothing procedure for the improvement of the localization assump-
tions only infrequently, i.e. not every time step. This result is crucial, since it shows that the
overall efficiency of the i-MSFV algorithm is comparable with the original MSFV method. At
the same time, the solutions are significantly improved, especially for very challenging
cases.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Natural porous media are typically governed by highly heterogeneous coefficients with complex spatial distributions.
While current advances in characterization and data integration provide increasingly detailed descriptions of the subsurface,
classical simulation techniques lack the capability to honor all these fine-scale structures. To deal with this resolution gap,
various multiscale methods have been developed during the past decade. The aim of these methods is to reduce the com-
putational complexity by incorporating the fine-scale variation of the coefficients into the coarse-scale operator; similar
to upscaling methods [1-3]. Upscaling methods aim at coarse-scale descriptions based on effective, tensorial coefficients
[4]. In addition, multiscale methods allow to reconstruct a fine-scale velocity field from a coarse-scale pressure solution
[5]. This velocity field can be used, for example, to solve the saturation transport equations on the fine grid. Current multi-
scale methods for flow in heterogeneous porous media can be categorized into multiscale finite-element (MSFE) methods
[6], mixed multiscale finite-element (MMSFE) methods [7-9], and multiscale finite-volume (MSFV) methods [10,11], where
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only the MMSFE and MSFV methods provide conservative fine-scale velocity fields. For problems arising from flow and trans-
port in porous media, a conservative velocity is required for the transport calculations. All these multiscale methods can be
applied to compute approximate solutions at reduced computational cost. While the multiscale solutions differ from the ref-
erence solutions computed with the same standard numerical scheme on the fine grid, convergence with respect to coarse-
grid refinement was proved for permeability fields characterized by two separable scales [7,11,12]. On the other hand, it was
shown that MSFE methods do not converge for problems without scale separation [11-14].

The accuracy of multiscale solutions was demonstrated for a wide range of test cases [15,16], but so far no a priory error
estimation was possible. Of particular interest are predictions of the error introduced by the multiscale localization assump-
tions as a function of coarse-grid resolution, aspect ratio, and permeability field.

The multiscale methods considered here are based on local numerical solutions of the fine-scale problem (honoring the
provided permeability field). From these local fine-scale solutions one can derive transmissibilities for the coarse problem.
The quality of multiscale results depends on the localization conditions employed to solve the local fine-scale problems. Typ-
ically, errors introduced by a multiscale method are most prominent in the presence of large (with respect to the coarse cells)
coherent structures with high permeability contrasts. Typical examples are extended, nearly impermeable shale layers [17].
In that case, there exists no general accurate localization assumption. For further improvements, global information can be
employed to enhance the boundary conditions of the local problems. Existing methods of this kind rely on an initial global
fine-scale solution [8,9,15,18]. However, for problems with high phase viscosity ratios, frequently changing boundary con-
ditions or varying well rates, the value of such an approach is questionable.

Another possibility is to improve the coarse operator iteratively. The adaptive local-global (ALG) upscaling approach is
based on global iterations to obtain a self-consistent coarse-grid description [19,20]. It was shown that ALG leads to more
accurate solutions than local upscaling methods. Recently, ALG was employed to improve the local boundary conditions
in the multiscale finite volume element method (ALG-MSFVE) [21]. Chen et al. [19] showed that ALG leads to asymptotic
solutions for large numbers of iterations, but typically these solutions are different from standard fine-scale solutions and
the error due to ALG is problem dependent.

In this paper we present an iterative multiscale finite-volume (i-MSFV) method. The i-MSFV solutions converge to the
corresponding fine-scale reference results, which is achieved by iterative improvement of the boundary conditions of the
local problems. In previous iterative multiscale methods, such as the ALG-MSFVE method, the coarse multiscale operator
is iteratively improved by updating all basis functions. This is computationally expensive and avoided here by using correc-
tion functions. In each iteration only the correction functions are updated, while the basis functions and hence the coarse
operator remain unchanged. While the i-MSFV method can still be employed as a typical multiscale method (without iter-
ations it is identical to the MSFV method) it can also be used as an efficient linear solver. Moreover, since it is possible to
construct a conservative fine-scale velocity field at each iteration level, the i-MSFV method can be operated anywhere be-
tween these two extremes. With the i-MSFV method it is possible to control the localization assumptions and therefore, sim-
ilar to the ALG-MSFVE method, the error can be reduced dramatically by only a few iterations.

This paper is organized as follows. In Section 2 we explain the MSFV method for a general elliptic problem. Based on that,
in Section 3 we introduce our i-MSFV method. Then, in Section 4 the convergence behavior of this iterative solver is exam-
ined numerically for a wide range of test cases; followed by Section 5, where a spectral analysis of the iteration matrix is
presented. In Section 6 we focus on applications to single and multiphase flow in porous media, and finally we conclude
the paper in Section 7.

2. The MSFV method

To explain the MSFV method, we consider the elliptic problem
-~V (4-Vp)=q (1)
on the domain Q with the boundary conditions Vp - n = fand p(x) = g at 027 and 0€2,, respectively. Note that 3Q = 8Q; U 32,
is the whole boundary of the domain €2 and n is the outward unit normal vector. The mobility tensor 4 is positive definite and
the right-hand sides g, f, and g are specified fields.

The MSFV method is designed to efficiently compute approximate solutions of problem (1) for highly heterogeneous coef-
ficients 4 and right-hand sides g, e.g. for mobility fields, which depict a high variance, complex correlation structures and
which are governed by a large range of length scales.

The MSFV method relies on an imposed coarse grid (solid lines in Fig. 1) and on a dual coarse grid (dashed lines in Fig. 1).
The former is composed of M control volumes @ (k € [1,M]) and the latter of N cells @" (h € [1,N]). As illustrated in Fig. 1,
each control volume @, contains exactly one node x; of the dual coarse grid in its interior. Note that these two grids can be
much coarser than the underlying fine grid on which the mobility field is represented. It is also emphasized that the concept
is not limited to the simple grids shown in Fig. 1. In principal, very irregular grids or decompositions can be employed. The
reduction of degrees of freedom to describe the fine pressure py (pressure field on the fine grid) is achieved through the
approximation

N M
p®) ~p®) =7 {Z D (R)Pr + gijh(ﬁ\f)} ; (2)

h=1 [k=1
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Fig. 1. The computational domain © with the coarse grid (solid lines) and the dual coarse grid (dashed lines); solid and dashed bold lines indicate a selected
coarse cell @, and a selected dual coarse cell Q", respectively. Shown on the right side is an enlarged coarse cell, which contains 11 x 11 fine cells. The fine-
scale boundary volumes of the dual coarse cells, which overlap with their neighbors, are depicted in grey.

where p, are the pressure values at the nodes x;. We refer to diﬁ as the basis functions and to @" as the correction function.
Opposed to classical finite-element methods, basis functions and correction functions are not analytical functions, but local
numerical solutions of problem (1) on Q" without and with right-hand side, respectively. Localization can be achieved by
employing reduced problem boundary conditions at 8Q", which is equivalent to

(" V)((4-Vy) ") =0 (3)
and
@" - V) ((4- VO . al) =" (4)

at 0Q" with A" being the unit normal vector pointing out of Q" At the dual-grid nodes x, which belong to ", ®!(x;) = 5, and
@"(x)) = 0. By construction, outside Q" the @ and @" are set to zero. An illustration of 2D basis and correction functions is
shown in Fig. 2.

To derive a linear system for the coarse pressure values p;, we substitute expression (2) for p’ into Eq. (1) and integrate
over @, which leads to

N M
— | V-(4-Vp)dQ= _/7 V. (z.v<z (Zfb’;pkw“)))dsz /7 qdQ. (5)
Q Q h=1 \k=1 &

for all I € [1,M]. With the Gauss theorem one obtains

N M M N N
—/, (»Z( ka¢£+v¢h>> -ﬁldF:Zka/ (—A-V¢Z)~ﬁ,dl"+2/7 (—4-VO") -mdl' = | qdQ,
o0 h k h=1 /2 o

-1 \k=1 =1 2 h=1 o2 e
(6)

which results in the linear system
Aipr = b (7)
for p, with

Fig. 2. Illustration of the basis function @" (a) and correction function @" (b).
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N
M= [ -4V mdr ®)
W= Joo
and
N
b,:ﬁqd9—2/7 (=i- V") . mdr. 9)
Q h=1 72

The unit normal vector 1, points out of Q,. Note that the right-hand side b; also contains the effects of the fine-scale fluxes
across 0Q; induced by the correction functions @".

With p, and the superposition (2) one obtains the fine-scale pressure p, which is an approximation of the fine-scale ref-
erence solution p;. An interesting property of this MSFV method is that the difference between p" and pyis solely due to the
localization assumption (4), i.e. with

=@ V)((x-Vpy)-0") at 0Q"Vhe [1,N] (10)

the two fine-scale pressure fields become identical.

It has been shown for a wide range of challenging test cases that the MSFV method with r* = 0 leads to very accurate re-
sults. In other words: in general, the reduced problem boundary conditions provide a good localization assumption.

For multiphase problems, a conservative fine-scale velocity field is required to honor mass balance of the transported
phase saturations. While the velocity

W= 3.V (a1

fulfills this requirement in a weak sense, i.e. for each coarse volume @Q;, it is non-conservative at the fine-scale. Therefore, if
one is interested in solving saturation transport on the fine grid, a further step is required. To reconstruct a conservative fine-
scale velocity field u”, which is consistent with o', the additional local problems

~V-(4-Vp})=q on (12)
with

(A-Vp}) -y =(A-Vp)-m, at 3G (13)
are solved. Note that the velocity field

u"{l'vp;" on (14)
—A-Vp at o0&

for all k € [1,M] is conservative (provided p” is obtained with a conservative scheme) and can be employed to solve
transport equations on the fine grid [10]. For multiphase subsurface flow problems, for example, saturation transport
may be calculated explicitly [22] or implicitly [23]. Since the mobility i generally depends on the saturations, in the
implicit version one has to iterate between the pressure equation (1), which is solved with the MSFV method, and
the transport equations. Good efficiency is achieved, if the latter one is solved implicitly on the individual domains
Q. The local solutions are then coupled by a simple Schwarz overlap scheme [23,24]. With this technique, which is very
efficient for hyperbolic problems, the low computational complexity of the overall MSFV algorithm can be maintained
for multiphase flow.

An important property of the MSFV method is its adaptivity. For example, the conservative velocity reconstruction de-
scribed above is only required in those coarse cells Q, where fine-scale transport is of interest. Moreover, very importantly,
the basis and correction functions can be stored and reused for subsequent time steps. They have to be recomputed only in
those dual cells Q" where changes of the coefficient 4 or (for the correction functions) the right-hand side q exceed a spec-
ified limit [22,23,25]. Recently, in order to make the MSFV method applicable for realistic problems, it was extended to in-
clude compressibility [26-28], gravity [27,29-32], and complex wells [33-35]. All these extended versions of the MSFV
method proved to be very effective for a wide range of challenging cases for which the multiscale and fine-scale solutions
are in excellent agreement. There exist scenarios, however, which demonstrate some limitations of the MSFV method.
One involves extended structures with sharp mobility contrasts. Examples are extended and almost impermeable shale lay-
ers [17], and meanders as they exist in the bottom layers of the SPE comparative test case 10 [36]. Another class of problems
for which the MSFV method fails to give accurate solutions are cases with large coarse-cell aspect ratios or highly anisotropic
mobilities. Although various ways to overcome this problem have been devised [37,16], there still exists potential for
improvement. Finally, it would be of great interest to have a method, which allows to improve the local pressure field iter-
atively to any desired level.

Next, we present an extension, which allows to iteratively improve MSFV solutions. It will be shown that the fine-scale
reference solutions can be recovered even for those cases mentioned above, where the standard MSFV method experiences
difficulties.
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3. Iterative MSFV (i-MSFV) method

As already pointed out, the difference between the MSFV solution p’ and the fine scale reference pressure pyis solely due
to the localization assumptions, i.e. p and p; become identical if the boundary conditions (4) are employed in fulfillment of
requirement (10) for . Unfortunately, however, Eq. (10) requires a priori knowledge of Dr.

3.1. Algorithm

Here, we explain a convergent iterative procedure to improve the localization boundary conditions, which does not de-
pend on py.
Instead of requirement (10), we consider the iterative improvement

M = @ V)((4-Vp) @' at 9Q"Vh e [1,N)] (15)
of . The superscript (t) denotes the iteration level and

“ h(t) S
> Db+ @
k=1

N

PO =St PO LT =5y

h=1

+T (16)

is the smoothed MSFV fine-scale pressure approximation, where S is a linear smoothing operator, T is the non-homogeneous
part of the iterative smoother, and ng the number of smoothing steps. Note that the correction functions """ are based on
the local boundary conditions (4) with r = ",

For a more compact presentation of the iterative MSFV (i-MSFV) method, we order the fine-grid values of p;, p’, o and &"
in vectors p,,p’, @, and ®" with entries [p}];, [p'];, [@}];, and [®"];, respectively. We then express in matrix form all linear
equations involved in the iterative procedure described above and write

(t-1) Ji—
[@" ] = Chp V) + Y, (17)
_ ple=1
A = Q + Dy, (18)
~— ——
f51 440 ’Z:ﬂ foﬁ,<’1‘v¢h(mj )mdr
0] s e =(0) =D
O] = 18", Y (@4)py) +[@" 1) +Ti. (19)
h=1

Eq. (17) corresponds to the localized problems for the correction functions di"(H), as following from the original elliptic Eq.
(1) with the boundary condition (4) defined according to (15). The terms on the right-hand side express the linear depen-
dence of """ on the smoothed pressure field p/" at the previous iteration step (due to the iterative boundary condition
(15)) and on the source term q of the elliptic problem, respectively. Eq. (18) corresponds to the coarse-scale problem (5), and
is equivalent to Eqgs. (7)-(9). Finally, Eq. (19) expresses the iterative reconstruction formula (16). Combining Egs. (17)-(19)
and indicating with I the identity matrix, we obtain the linear relation

1/ ng N - s N - J(t—
Pl = 18", [P AG (Q + DgEp) + B + Ti+ ™1, [([@]A4' Dig + i) ol [0V, (20)

b #(ns)
Aiq

i

between the smoothed fine-scale pressure fields p," " and p.", at two consecutive iteration steps.

An algorithmic outline of the i-MSFV method is shown in Table 1. First, the fine-scale pressure is initialized, e.g. it is set to
zero. Then, all basis functions are computed and the right-hand side of the elliptic pressure equation is integrated over each
coarse volume. These steps have to be performed only once and are followed by the main iteration loop. At the beginning of
each iteration, n; smoothing steps are applied and the smoothed fine-scale pressure is employed to compute the correction
functions. These are required to obtain the right-hand side of the linear system for the coarse pressure. At the end of each
iteration, the coarse system is solved and the new fine-scale pressure approximation is reconstructed. Note that the compo-
nents of the vector p are the actual pressure values at the dual coarse-grid nodes.

3.2. Interpretation as a multigrid method

The operations depicted in Table 2 illustrate how the i-MSFV algorithm can be interpreted as a multigrid method. First, ng
smoothing steps (iterative linear solver) are applied to improve the approximate fine-grid solution p ). A subsequent restric-
tion step leads to the right-hand side b~V of the coarse-grid system for the pressure values p'* at the dual coarse-grid nodes.
Note that this involves updating the correction functions o""; the coarse-grid operator A on the other hand, which is based
on the basis functions @, has to be constructed only once at the beginning. The coarse system can be solved with any suitable
solver, but due to the typically extreme coarsening factors, the coarse problem may be small enough to be solved directly. The
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Table 1
Algorithmic outline of the i-MSFV method

initialize p' =
Vh : Vk : compute basis functions ®f!
calculate Q; Eq. (18)
for t =1 to number of i-MSFV iterations {
p;(tfl) =p"
fori=1ton,{
pY =s. p{ 4 T; smoothing step
}
Vh : compute correction function ®'"; based on p, ¢ ~ )
calculate " = Q@ + DC - p{*~" + DE; Eq. (18)
solve coarse system A - p© = b“"; Eq. (18)
reconstruct p'; Eq. (2)

Table 2
The i-MSFV algorithm interpreted as a multigrid method

smoothing: t=t+1
p;(tfl) _ gns .p/(tfl) +T — p/(t)
restriction: prolongation:
b)) =Q+DC -pi"V + DE PO =L, [l @ + @]
solving:

pH — A-1. pt-D

updated fine-grid solution p® is obtained by prolongation, which is simply achieved by superimposing the correction func-
tions plus the basis functions weighted with the new coarse pressure values. Note that this interpretation of the i-MSFV meth-
od as a multigrid method is different than what is presented in [28], where no correction functions are considered there.

Although only shown here for two grid levels, the i-MSFV method can be extended for more complex cycles. Moreover, it
can be seen from the abstract operations in Tables 1 and 2 that no assumptions regarding the topologies of the fine- and
coarse-scale grids are required. For example, the same methodology can be applied for unstructured fine grids, and instead
of coarse grids one can employ appropriate domain decompositions. In any case, however, the smoothing scheme is critical
for robustness and good convergence. For all the cases we considered it was found that consistent line-relaxation works very
well (note that a different smoother would be required for unstructured fine grids). This might be mainly due to the effec-
tiveness of line-relaxation to distribute the residuum from the coarse dual-cell boundaries accross the domain. Moreover,
line-relaxation only depends weakly on the grid aspect ratio and on the level of anisotropy [38]. Next, the line relaxation
scheme used for the studies presented in this paper is described.

3.3. Fine-scale smoothing

As already mentioned, line-relaxation (LR) is only one possibility to smooth the approximate fine-grid solution p’¢~ 1.
Here, we describe how LR is employed in our current i-MSFV implementation. Therefore, we consider the fine-scale system

M -p; =R, (21)
which results form a conservative finite-volume discretization of Eq. (1) on the fine grid. For simplicity we assume that the

grid lines are parallel to the x-, y- and z-directions of a Cartesian coordinate system. The extension of this algorithm to
unstructured grids is a topic of future research and not within the scope of this paper. Then we split the linear operator
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as M = M, + M, + M,, where M, , represent the discretizations of the elliptic operator in the corresponding coordinate direc-
tions. If only one operator plus the diagonal components of the other ones are treated implicitly, one obtains the iterative
scheme

(M + diag(M, + M.)) - p"*'/* =R — (M, + M, — diag(M, + M.)) - p', (22)
(My, + diag(My + M,)) _pv+2/3 =R — (M, + M, — diag(M, + M,)) _pvﬂ/B7 (23)
(M. + diag(My +M,)) -p"" = R~ (My + M, — diag(M; +M,)) -p"*", (24)

where p” is the approximate solution after the vth LR-step and diag(M,) represents the matrix with the diagonal of M,. This
scheme, in which the three linear systems (22)-(24) are solved sequentially each iteration, is a slightly modified version of
the alternating directions implicit (ADI) method by Peaceman and Rachford [39]. For a two-point flux approximation, the
linear operators My, have a tri-diagonal structure and the systems (22)-(24) can be solved with the Thomas algorithm
[40], which has a linear complexity. Moreover, these three operators can further be split into independent linear systems
for each grid line, which is an important property for massive parallel computing. Note that this iterative LR solver is con-
vergent, but for big problems the rate is extremely slow. In our framework, however, only very few LR-steps are required to
smooth p“~V sufficiently for an effective improvement of the local boundary conditions. As demonstrated in Section 4, the
optimum number of smoothing steps per i-MSFV iteration is case dependent.

4. Numerical convergence studies

Here, the convergence rate of the i-MSFV method is assessed. The first set of studies is based on a test case consisting of a
rectangular 2D domain with constant pressure and no-flow conditions at the vertical and horizontal boundaries, respec-
tively. For the discretization, an equidistant Cartesian fine grid with 44 x 44 cells was used and in addition, for the i-MSFV
method, a 4 x 4 coarse grid was employed (Fig. 3(a)). Since each coarse cell is composed of 11 x 11 fine cells, the upscaling
factor is 11 in each coordinate direction. For the following studies, homogeneous and heterogeneous mobility fields and do-
mains with different aspect ratios o (horizontal to vertical dimension) are considered. The size of each fine cell is Ax x Ay
with A x = 1 = 2 Ay. Note that a case with isotropic mobility and Ax = «Ay is numerically identical to a case with Ax = Ay and
a mobility which is larger by a factor of o? in the y-direction.

The homogeneous test cases with 4; = §;; also include a source with g = 1/(AxAy) and a sink with g = —1/(AxAy) distrib-
uted over the fine cells (13,13) and (32,32), respectively (Fig. 3(a)). For the heterogeneous cases, the mobility field depicted
in Fig. 3(b) with natural logarithm (In) variance and mean of 6.66 and —0.29, respectively, which is a part of the top layer of
the three-dimensional SPE10 test case [36], was used.

Fig. 4 shows the base-10 logarithm (log) of the maximum error in the domain, i.e. log(€) with € = ||p’ — py|| ., as a function
of i-MSFV iterations and smoothing steps (per iteration), n,, for the homogeneous (Fig. 4(a) and (c)) and heterogeneous (Fig.
4(b) and (d)) cases with « =1 (Fig. 4(a) and (b)) and o = 10 (Fig. 4(c) and (d)). For all cases there exists a minimum n;, for
which the i-MSFV method converges. The best convergence can be observed for the homogeneous isotropic (o = 1) case
and the worst convergence for the heterogeneous case with « = 10.

No Flow
lav]
— I
Il o
=¥
No Flow
a

Fig. 3. (a) computational domain, which consists of 44 x 44 fine and 4 x 4 coarse cells. In the homogeneous cases, the fine cells marked black contain a
source and a sink of strength 1/(AxAy) and —1/(AxAy), respectively and (b) natural logarithm of the heterogeneous mobility field.
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Fig. 5(a) shows the convergence histories for the heterogeneous test case as a function of « with n; = 10. The slope de-
creases as o increases, but eventually it approaches an asymptotic value. This observation is confirmed by the plot in Fig.
5(b), which shows the convergence rate (average slope between log(e)= -2 and log(€) = —6) as a function of « and ns for
the heterogeneous-anisotropic case. For « > 20, the convergence dependence on the aspect ratio becomes negligible. This
result is encouraging, since it demonstrates that the i-MSFV method can be applied for cases with very large aspect ratios
and/or extreme anisotropies. One reason for this is the following property of the LR solver, which acts as a smoother in
the i-MSFV method. For comparison, Fig. 5(b) also shows the convergence rates (multiplied with 100) of the LR solver for
cases with different aspect ratios. Note that virtually no sensitivity on o can be detected.

Fig. 6(a) illustrates how the convergence rate increases with n;. To estimate the optimal number of smoothing steps per
iteration, we assume that the amount of computational work to calculate the correction functions, to solve the coarse prob-
lem, and to reconstruct p’ corresponds to f times the computational work required for one smoothing step. This leads to the

Convergence rate
1+ng/p

It is a measure for the error reduction, if the computational work equivalent to one MSFV iteration (without smoothing nor
reconstruction of a conservative velocity field) is invested. Fig. 6(b) shows the effective convergence rates for various aspect
ratios o as functions of n,, where g is assumed to be one.

To analyze the computational cost associated with the i-MSFV method as a function of the problem size, the number of
fine cells in the homogeneous isotropic test case was increased successively by adding coarse-grid cells with 11 x 11 fine
cells each. Fig. 7 depicts the convergence rates for 2 x 2,3 x3,4x4,5x5,6x6,7x7,8x8,9x%x9,and 10 x 10 coarse
grids, and the log — log plot clearly shows (dashed line) that the convergence rate (for constant n; = 10) is insensitive to

Effective convergence rate = (25)

a 0 L H
_— o=
-2 Y\ _——— n\: =
W PR n=2
\\ \_\. . n~=3
4 \\\ S - ==~ =4[ g
d N S —F =5 8 NN
= N\ s, - = \ N
& 6 g o -6 <
! \ \ N - ! \ N
= A ~ £ )
& 8 5 o~ 20 8 \ N .
3 Voo S 3 ~ N
\ \ N N N ~.
~
10 A - 10 :
. N
\ \ . \ N
\ . > \ N
12 N 12 o >
. . N
N
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Fig. 4. Numerical convergence study with the first set of test cases: (a) homogeneous-isotropic, (b) heterogeneous-isotropic, (¢) homogeneous-anisotropic
(o¢=10) and (d) heterogeneous - anisotropic (o = 10).
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the fine-grid size; opposed to the convergence rate of the LR-solver (solid line). Moreover, all calculation steps in the i-MSFV
algorithm, except solving the global coarse-scale problem, can be performed locally and independently. Therefore, since up
to very large cases the cost for solving the coarse system is virtually negligible, the i-MSFV algorithm is a very efficient linear
solver for large, stiff problems, and it is ideally suited for massive parallel computing.

Another interesting parameter is the upscaling factor. Fig. 8 shows the convergence rate for the heterogeneous case with
upscaling factors I' of 11 x 11,7 x 7,and 5 x 5. In Fig. 8(a), the convergence rates are shown as functions of o with constant
ng =10 and in Fig. 8(b), they are depicted as functions of ng with constant « = 5. Obviously, the optimal choice of I" depends
on the size of the fine grid and on the computational cost of the individual algorithmic components; in particular of the
coarse-scale solver.

To complete our numerical investigations of the i-MSFV convergence behavior, four sets of 20 realisations of log-normally
distributed mobility fields with spherical variogram and dimensionless correlation lengths i/, =0.5 and i/, = 0.02 are
generated using sequential Gaussian simulations [41]. For each set, variance and mean of In(4) are 2.0 and 3.0, respectively.
As depicted in Fig. 9, the angles 0 between the long correlation length and vertical domain boundaries (or vertical grid lines
orientation) are 0°, 15°, 30°, and 45°. For each case, a 100 x 100 fine and a 20 x 20 coarse grid were employed. At the bound-
aries of the quadratic domain, no-flow conditions were applied and at the lower left and upper right corners (cells (3,3) and
(97,97)), a source and a sink of equal strength (q = +1/(AxAy)) were imposed (Fig. 10). Fig. 11(a) and (b) shows the mean
convergence rates as functions of 0 for different n, «, and I'. As one can see, there is a significant difference in the conver-
gence rates. However, in general the convergence rate decreases with increasing layering orientation angle 6.
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5. Spectral analysis of the i-MSFV method

We conclude the convergence assessment of the i-MSFV method by analysing the spectrum of the associated iteration
ns)

matrix, i.e., according to Eq. (20), of A™ in
PO =A" p b (26)

Clearly, the iteration procedure converges, if and only if all eigenvalues of A" lay within the unit-disc of the complex
plane.

Various spectra of A" for the homogeneous anisotropic test case with no-flow conditions at all boundaries are depicted
in Fig. 12. Fine and coarse grids consist of 44 x 44 and 4 x 4 cells, respectively and the different figures refer to iteration
matrices based on different n,. These results confirm those presented in Fig. 4(a), according to which at least two smoothing
steps are required for the homogeneous isotropic case. Notice that unlike the matrix M of the fine-scale problem (21), A" is
not symmetric and possesses non-real eigenvalues. All eigenvalues of A™™ are clustered around the negative real axis, which
implies that the approximate solution at successive iteration steps oscillates around the exact one.

The eigenfunctions p associated with the largest eigenvalues are plotted in Fig. 13 together with the corresponding resid-
uum p = V- 4-Vp in the discrete fulfillment of Eq. (1) without right-hand side. Only the results for ns =0 (unstable) and
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Fig. 9. Natural logarithm of one of the 20 different mobility field realizations used in this study (for different angles 6 = 0°, 6 = 15°,0 = 30°, and 0 = 45° from
left to right).
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mark the two wells with g = +1/(AxAy) distributed over the fine cells (3,3) and (97,97).
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Fig. 11. (a): mean convergence rate for different angles 6, different numbers of smoothing steps, and I" = 5 x 5. Also shown are the error bars for the two
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n, = 2 (stable) are shown. In both cases, the residuum is largest at the dual-cell boundaries and without smoothing it is zero
everywhere else. This is in agreement with the fact that any non-smoothed solution p' fulfills Eq. (1) exactly inside the coarse
dual cells. The smoothing steps efficiently redistribute the residuum and reduce its maximum amplitude. Consequently, the
eigenvectors of A" get amplified for n;= 0 and damped for n, = 2.

In Fig. 14, similar spectra of the iteration matrix A" can be observed for cases with heterogeneous mobility fields. In Fig.
15(a) and (b), the largest values of the residua associated with the ten least stable eigenvectors for n; = 0 and ng = 5, respec-



H. Hajibeygi et al./Journal of Computational Physics 227 (2008) 8604-8621 8615

a b '
2 C
r 0.5
2 i .ﬁ_. 2 i >
g O & nd g 0 ®
= - L
C 05 F
2 r
R AR SRR BTSN ATSATE AR S 717\\\\\\\\\\\\\"\"1'--\1\s——f"\"“\\\\\\\\\\\\
-10 - - - - 0 -2 0 5
Re(}) Re(M)
C 05F d o'r
0.25 [ 0.05 |
= £ = C
C @ N ° e °
E 0 g E 0 5 %% b %
L g Ll -
025 -0.05 |
1 075 -05 025 0 025 05 075 1 02 015 -0 -005 0 005 0. 015 02
Re(}) Re(})

Fig. 12. Spectra of the iteration matrix A"™ of i-MSFV method for the homogeneous isotropic case with 44 x 44 fine cells, 4 x 4 coarse cells, no-flow
boundary conditions at 82 and different values for n: (a) ny=0, (b) ny=1, (c) ny=2 and (d) ny=5.

tively, are presented. Notice the discontinuous distribution in Fig. 15(a) for the case with ng = 0. Clearly, the residuum gets
distributed by the n; = 5 smoothing steps (Fig. 15(b)). Finally, Fig. 16(a) and (b) depict the least stable eigenvector for ny=5
and its residuum.

6. Application to subsurface flow

In typical incompressible subsurface flow simulations, the pressure in the porous media is governed by Eq. (1). As in the
examples of Section 4, the mobility 4 typically has a complex distribution with high variance and sharp contrasts. It is a func-
tion of the rock permeability k, the fluid phase saturations and the fluid viscosities. For single-phase flow of a fluid with vis-
cosity u one can write 4= k/u. The expression for multiphase flow is based on the relative permeability concept and reads
A= kZ;il k:,/1; (n, is the number of fluid phases). The relative permeabilities k;; [40] have to be specified for each fluid phase
j as functions of the saturations. While 1 does not change with time in single-phase flow simulations, it evolves if multiple
fluid phases are transported through the reservoir. For the following studies, the right-hand side of Eq. (1) is non-zero only at
the well, i.e. no capillary pressure difference between the fluid phases and no gravity are considered.

6.1. Single-phase flow

Here, in addition to the examples discussed in Section 4, the convergence behavior of the i-MSFV method for single-
phase flow in particularly challenging reservoirs is investigated. The rectangular 2D domain is discretized by a Cartesian,
equidistant 220 x 55 fine grid. No-flow conditions are applied at the bottom and top walls; at the left and right bound-
aries, constant dimensionless pressure values of 1 and O are applied, respectively. The convergence histories for the per-
meability fields from the top and bottom layers (Fig. 17(a) and (b)) of the 3D SPE 10 test case [36] are shown in Fig. 18(a)
and (b), respectively, where a 20 x 5 coarse grid was employed. As previously, the error is defined as the logarithm of the
maximum absolute difference between the approximate i-MSFV and the reference fine-scale pressure values. While for the
top layer a good convergence rate is achieved with ng = 10 (Fig. 18(a)), approximately 250 smoothing steps are required for
optimal convergence with the bottom layer permeability field (Fig. 18(b)). However, also in this case many more smooth-
ing steps are necessary, if LR is employed as an iterative linear solver (~10° iterations are necessary in order to reduce the
error by 5 orders of magnitiude). Moreover, Fig. 19 illustrates that the number of smoothing steps can be reduced dramat-
ically, if a coarsening factor of I'=5 x 5 (and fine grid of 220 x 60) instead of I'=11 x 11 (and fine grid of 220 x 55) is
employed.

As a further test case, a rectangular domain with two almost impermeable shale layers is considered (Fig. 20(a)); the
mobility in the shale layers is 10'° times smaller than in the rest of the domain. The equidistant Cartesian fine grid consists
of 55 x 55 cells and the coarse grid for the i-MSFV method contains 5 x 5 volumes. Again, no-flow conditions are applied at
the bottom and top boundaries and at the left and right sides the dimensionless pressure values are set equal to 1 and 0,
respectively. Fig. 20(b) shows the convergence histories with ng =10 for different aspect ratios.
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6.2. Multi-phase flow

As already pointed out, in multiphase flow simulations the mobility 4 and therefore the pressure field evolve with time as
the phase saturations are transported through the domain. Obviously, this also affects the localization boundary conditions,
which continuously experience changes in the whole domain, even where the mobility remains constant. Consequently, in a
straight forward application of the i-MSFV method for multiphase flow, all correction functions have to be re-computed mul-
tiple times every time-step. Although the number of i-MSFV iterations is reduced by the good initial condition obtained from
the previous time step, such an approach is significantly more expensive than the original MSFV method. Here it is shown
that only infrequently updating the localization boundary conditions for the re-computation of the correction functions is
sufficient to obtain highly accurate solutions. While at the beginning of a simulation a converged solution is computed,
the same localization boundary conditions are used for a number of subsequent time steps and are only updated infre-
quently, e.g. each 10th time step by applying one iteration. Therefore, for the major part of the simulation the original MSFV






8618 H. Hajibeygi et al./Journal of Computational Physics 227 (2008) 8604-8621

a or b
0 "\‘ s
PN T~
AN ~ Tl
N N TR~
B \‘\.\.\\ 2 > T
-4 AN X N L .
! N \\\~\ ASERN = 4 >
s -6 [
o + (RN AN ] S
‘o VR N\ ‘o p ~
> 8 Mot o0 N
Q - VLN \ < ~
- - \ \ \ ~ ~ N
10 r NS N\ -8
10 R -
: B [o=1] >
1k A 10H===- n_=200
L \\ SOE N \ - - - - n=220
L \ \ N n =250
14 L0 TR TR R TR R TR R 12
0 10 20 30 40 50 0 10 20 30 40 50 60 70 80 90 100
Iterations Iterations

Fig. 18. Numerical convergence histories with the permeability field of [a] Fig. 17(a) and [b] Fig. 17(b) for «=1, I' =11 x 11, and a fine grid of 220 x 55.

0 '=5%x5
A ——— n =20
W - —--- n=30
2 N n_=40
\ T~
\ T
= 4 \ ek
- \ s
o \ T~
= 6 :
%D N
AN
~ AS
8
AN
N
AN
-10 >
12 10 20 30 40 50
Iterations
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The i-MSFV method with infrequently updating the localization conditions is tested for two two-phase flow scenarios
whith a viscosity ratio y,/u; of 10 and the relative permeabilities k,,, = S?, (S12 € [0,1] are the phase saturations) for the
first test case and k,,, = Sy for the second one. The permeability fields of Figs. 17(a) and 20(a) are employed and the rect-
angular domains are discretized by 220 x 55 and 55 x 55 fine grids, respectively. In both cases, coarse grids consisting of
volumes containing 11 x 11 fine cells with an aspect ratio of 10 are used and no-flow conditions are applied at the whole
domain boundary. Initially, the domains are occupied with phase two and the less viscous phase is injected into the fine cell
(1,1). In the first scenario, production occurs from cell (220,55) and in the second scenario from cell (55,55). For the numer-
ical solution of the phase transport equation, an explicit scheme was employed. Figs. 21 and 22 show the saturation maps for
the two test cases after 0.165 pore volume injected (PVI). One can observe that the i-MSFV method with updating the cor-
rection function boundary conditions every 10th time step leads to results, which are virtually identical with the fine-scale
reference solutions. On the other hand, the MSFV solutions of these challenging test cases show significant deviations from
the reference.

7. Conclusions

In this paper, an iterative multiscale finite-volume (i-MSFV) method is devised. Each iteration, the MSFV fine-scale pres-
sure solution is improved by a number of smoothing steps. The new approximation is then used to obtain better local bound-
ary conditions for the new correction functions, which are required for the right-hand side of the coarse system. It is
demonstrated for a wide range of difficult test cases that the i-MSFV method combined with a simple line-relaxation (LR)
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Fig. 21. Two-phase flow saturation maps for the SPE10 top layer test case with s, /i, = 10,k
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Fig. 22. Two-phase flow saturation maps for the shale layer test case with yu, /1, = 10,k
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method with local boundary conditions updated every 10th time step by applying 1 iteration and (c) standard MSFV method.

smoother works well. Each LR step, an independent tri-diagonal system has to be solved for each grid line, e.g. with the Tho-
mas algorithm which scales linearly with the problem size. Moreover, as shown earlier, LR is insensitive to the grid aspect
ratio and the level of anisotropy, which is the reason that the i-MSFV method is very efficient for highly anisotropic prob-
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lems. The number of iterations required by the overall solution algorithm is problem size independent, but more i-MSFV iter-
ations are required as the coarse-grid-cell aspect ratio increases. However, the number of iterations reaches an asymptotic
value beyond an aspect ratio of approximately 20. A further favorable property of the i-MSFV algorithm is that it can be oper-
ated anywhere between a multiscale method (without iterating it becomes identical to the MSFV method with correction
functions) and an efficient linear solver. For example, if the iteration procedure is terminated before full convergence has
been achieved, the method still delivers a conservative fine-scale velocity field. This is of relevance, e.g. if transport is solved
on the fine grid. It is also shown that the i-MSFV method can be interpreted as a multigrid method which allows for extreme
coarsening factors. An important property here is that no explicit upscaling is required.

Convergence studies with test cases involving shale layers, high coarse-cell aspect ratios, and layered permeability fields
with sharp contrasts demonstrate the robustness and efficiency of the new method. Another important result is related to
multiphase flow, where the mobility experiences changes due to evolving phase saturations. For the examples considered in
Section 6.2 the i-MSFV method with one iteration every 10th time step leads to accurate solutions, that are very close to the
fine-scale solution. This indicates that the efficiency of the i-MSFV method is similar to that of the MSFV method for complex
two-phase flow problems. On the other hand, the i-MSFV solutions are more accurate and problems with high coarse-cell
aspect ratios, strong anisotropy, and shale layers are avoided. Finally, more investigations for a wider range of multiphase
flow scenarios are necessary in order to find a more specific criterion for the growth of errors versus the frequency and
amount of iterative improvements of the localization conditions.
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